
Basic declarative semantics of concurrency
Homework assignment

December 20, 2023

Abstract

This assignment is dedicated to the declarative semantics of weak
memory models. Its goal is to reinforce the concepts of executions
graphs, various relations on these graphs, and the consistency predi-
cates.

Introduction
Recall the definition of the execution graphs.

Definition 1. An execution graph G is a tuple ⟨E, po, rf, co⟩, which compo-
nents are defined as follows.

• E ⊆ N× Tid× Lab is a set of events.
Event e = ⟨n, t, ℓ⟩ is a triple, where:

– n is an event identifier;
– t is a thread identifier;
– ℓ is a label.

• po ⊆ E × E is the program order relation. It is a strict partial order
that totally orders all the events within a single thread.

• rf ⊆ [W]; =loc ∩ =val; [R] is the reads-from relation. This relation
connects each write event with the read events that read value from it.

1



• co ⊆ [W]; =loc; [W] is the coherence order relation. This is a strict partial
order that totally orders all write operations to the same location.

The definition of labels is the same as was given in previous assignment,
except we added the access mode parameter. A label ℓ ∈ Lab can be one of
the following:

• Ro(x, v) is a read label of value v ∈ Val from memory location x ∈ Loc
with access mode o ∈ Mod;

• Wo(x, v) is a write label of value v ∈ Val into memory location x ∈ Loc
with access mode o ∈ Mod;

• Fo is a fence label with mode o ∈ Mod.

Access mode can be either: non-atomic na, relaxed mode rlx, acquire
mode acq, release mode rel, or sequentially consistent mode sc.

Mod ≜ {na, rlx, acq, rel, sc}.

Access modes are partially ordered by their strength as the following
diagram demonstrates:

na rlx

rel

acq

sc⊏ ⊏
⊏

⊏

⊏

We also define several derived relations on execution graphs.

rb ≜ rf−1; co reads-before
eco ≜ (co ∪ rf ∪ rb)+ extended coherence order
sw ≜ [Wrel⊑]; rf; [Racq⊑] synchronizes-with
hb ≜ (po ∪ sw)+ happens-before

In the context of this assignment, we assume that the relation (po∪ rf)+

is acyclic (i.e., it is a strict partial order). As a consequence, relation hb is
also acyclic, because hb ⊆ (po ∪ rf)+.

2



Recall the definition of the simplified C/C++ memory model, discussed
on the lecture. An execution graph G is consistent with respect to this model,
if the following condition is met:

hb|loc ∪ rf ∪ co ∪ rb is acyclic relation.

Task 1 (4 points)
Prove that the definition of the simplified C/C++ consistency given above
is equivalent to the following condition:

hb; eco is irreflexive relation.
Hint: you might find useful the following equality:

(r1 ∪ r2)
+ ≜ r+1 ∪ r∗1; (r2; r

∗
1)

+

where r1 and r2 are two arbitrary relations.

Proof. TODO:

Task 2 (4 points)
Consider another relation — writes-before, defined as follows:

wb ≜ [W]; (rf?; hb|loc; (rf−1)?) \ id; [W]

where id ≜ {⟨x, x⟩ | x ∈ E} is an identity relation, and r? ≜ id ∪ r is a
reflexive closure of a relation.

Assuming that the given execution graph does not contain read-modify-
write (RMW) events, prove that the definition of the simplified C/C++
consistency is also equivalent to the following condition:

wb is acyclic relation
Hint: try to show that wb ⊆ co.

Proof. TODO:

3



Task 3 (2 points)
Consider the problem of checking whether the given execution graph G is con-
sistent (with respect to the simplified C/C++ consistency model), assuming
that the G.co relation is unknown.

Answer the following questions:

1. What graph algoritm can be used to solve this problem (i.e., to check
consistency of the graph G).

2. What definition of consistency, among the three equivalent given above,
is the most suitable for this algoritm and gives the best time complexity
for the overall procedure of consistency checking?

TODO:

References
[1] O. Lahav, N. Giannarakis, and V. Vafeiadis. Taming release-acquire

consistency. ACM SIGPLAN Notices, 51(1):649–662, 2016.

[2] O. Lahav, V. Vafeiadis, J. Kang, C.-K. Hur, and D. Dreyer. Repairing
sequential consistency in c/c++ 11. ACM SIGPLAN Notices, 52(6):618–
632, 2017.

4


