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bisher veröffentlicht.
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Abstract

This study investigates the necessity and effectiveness of replacing NotAtomic memory
accesses with Unordered in Kotlin/Native, a contemporary Kotlin programming language
technology that enables cross-compilation with native languages. The current compiler
implementation uses NotAtomic mode, which is incorrect according to LLVM documenta-
tion, and may lead to vulnerabilities in multi-threaded programs.

Through rigorous benchmarking, we demonstrate that the Unordered mode implementa-
tion in LLVM is not currently optimized enough to facilitate a replacement of the NotAtomic
mode. Although no vulnerabilities were observed during our experiments, it is still impor-
tant to report the discovered issue to developers, as future versions of LLVM may cause
unexpected program errors.

The findings of this research offer valuable insights for the development of future versions
of Kotlin/Native and other implementations of programming languages that rely on LLVM
for compilation.

iii



Contents

1 Introduction 1

2 Statement and Motivation of Research 2
2.1 Goal and Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 The LLVM Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 LLVM Atomic Orderings and Memory Model . . . . . . . . . . . . . . 4
2.2.3 Studies on Compilation Schemes for Programming Languages . . . 6

3 Assessing Kotlin/Native Compiler Correctness 7
3.1 NotAtomic as a Source of Undefined Semantics in the Safe Language . . . 7
3.2 Reproducing Undefined Semantics of NotAtomic in Practice . . . . . . . . . 9
3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Implementation of the Atomic Ordering Pass in Kotlin/Native Compiler 12
4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Testing the Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Evaluating Modified Kotlin/Native Compiler Performance 16
5.1 Evaluation Research Questions and Hypotheses . . . . . . . . . . . . . . . 16
5.2 Design of Evaluation Experiments . . . . . . . . . . . . . . . . . . . . . . . 17

5.2.1 Environment’s Technical Profile . . . . . . . . . . . . . . . . . . . . . 18
5.2.2 Exploring Kotlin/Native Benchmarks as a Testing Framework . . . . 18
5.2.3 Acquiring a Dataset of Multi-threaded Benchmarks . . . . . . . . . . 20

5.3 Mitigating the noise in Kotlin/Native benchmarks . . . . . . . . . . . . . . . 21
5.4 Experimental Results Analysis and Discussion . . . . . . . . . . . . . . . . 22

6 Conclusions and Future Work 25
6.1 Completed Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



1 Introduction

A programming language memory model is a formal specification that describes which
outcomes are possible in multi-threaded programs. Moreover, it should not be too strict to
leave room for different optimizations to be applied by the compiler. Therefore, the mem-
ory model defines a balance between the performance of programs and the strictness of
guarantees provided to the developer.

One significant aspect of the memory model’s implementation is the compilation scheme
for shared memory accesses. This compilation scheme defines how the source code
for reading and writing shared variables is compiled into assembly instructions for the
processor. Our work is focused on examining several possible compilation schemes for
the Kotlin programming language.

Kotlin is a modern programming language that is widely used in software development.
Like its predecessor, Java, Kotlin positions itself as a safe language, where undefined
behavior found in C-like languages is strictly unacceptable.

One of the key technology of Kotlin is the Kotlin Multiplatform project [14], which enables
developers to compile Kotlin code for various target platforms, including Android, iOS,
Web, Desktop, and Server-side. Kotlin Multiplatform consists of three versions of Kotlin:
Kotlin/JVM, Kotlin/JS, and Kotlin/Native.

The Kotlin/JVM version compiles Kotlin code to execute on the Java Virtual Machine.
This allows Kotlin to be interoperable with Java, meaning that Java code can be called
from Kotlin and vice versa. Furthermore, Kotlin/Native [15] is another version of Kotlin
that allows Kotlin code to be compiled using the LLVM framework [34] into a binary file
that can be directly executed on a computer. This provides the ability to interop with
other languages such as C and Swift, opening up more opportunities for cross-platform
development.

The compilation processes of Kotlin/JVM and Kotlin/Native are fundamentally similar, as
illustrated in Figure 1. First, the Kotlin compiler translates the code into either JVM byte-
code or LLVM bitcode, respectively, which is then subject to a series of checks and op-
timizations by the corresponding backend. Finally, the backend compiles the code into
executable files.

Figure 1: Kotlin Multiplatform compilation scheme
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Similar to programming languages, both JVM and LLVM possess memory models that
determine the possible outcomes and permitted optimizations of the programs. The key
difference between the two is safety, with JVM guaranteeing no undefined behavior in any
situation, while LLVM does not. Notably, undefined behavior is unacceptable in Kotlin,
which emphasizes safety.

Thus, there arises a challenge: despite the stark differences in memory models between
Kotlin/JVM and Kotlin/Native backends, a safe and uniform memory model is still needed
for Kotlin. This is a complex problem, and the development of a suitable memory model
for Kotlin/Native is currently ongoing [7, 8, 28]. Our research aims to contribute to this
process.

The compilation of memory accesses in Kotlin/Native involves the translation of these
accesses into either load or store instructions in LLVM bitcode, with the atomic ordering
mode [21] specified to determine the ordering guarantees of the instruction. For instance,
as shown in Figure 2, a simple Kotlin read from variable x on the left may be compiled
into a load instruction with the unordered mode on the right.

Figure 2: Kotlin to LLVM bitcode translation example.

Of the various atomic orderings available, our research focuses on two: NotAtomic and
Unordered . The NotAtomic mode is the weakest, allowing for maximum optimizations
but also permitting undefined behavior in the case of a data race. This results in unsafe
semantics. The stricter Unordered mode, on the other hand, restricts the number of
optimizations but provides safe semantics. According to the LLVM documentation [21],
this mode should be used in safe languages such as Java and, by extension, Kotlin.
However, the current Kotlin/Native compiler uses the unsafe NotAtomic mode instead.
Furthermore, Unordered mode is not present in any other known implementations of
safe languages that uses LLVM, such as GraalVM for Java [11], GHC for Haskell [33] and
Swift implementation for Swift [32].

Therefore, our project aims to investigate and compare the Unordered and NotAtomic
compilation schemes for shared memory accesses in Kotlin/Native.

2 Statement and Motivation of Research

This section will outline the motivation for our study, as well as its purpose and objec-
tives. Additionally, we will provide an overview of the sources and research required to
comprehend our work.
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2.1 Goal and Tasks

Any compiler must fulfill two fundamental requirements. First, it must be correct: the
stated guarantees must hold for compiled programs. Second, it must be efficient: pro-
gram performance is a crucial characteristic in numerous areas of development. Thus,
the motivation for our research is to examine how the Kotlin/Native compiler meets both
these criteria.

The aim of our work is to investigate the correctness and performance of a compilation
scheme that uses Unordered instead of NotAtomic in Kotlin/Native.

To accomplish this goal, several tasks must be carried out. Firstly, it is essential to assess
the correctness of the current implementation of the Kotlin/Native compiler in practice.
This involves verifying whether the theoretically described vulnerability is reproduced in
reality and whether it is necessary to replace NotAtomic accesses at all.

Next, the approach must be implemented in the Kotlin/Native compiler and tested in prac-
tice. This requires studying the large compiler code base and implementing a new com-
piler pass similar to the original ones. The correctness of the implementation must also be
tested. Besides, it is important to examine the approach on different architectures, since
different hardware memory models lead to different effects on the behavior of programs.
To accomplish this, tools for executing the modified compiler and analyzing its work in
various environments, such as Linux x64 and MacOS Arm64, must be established.

Finally, the impact of the approach on the performance of the compiled programs should
be measured through benchmarking its implementation. To do this, a suitable test corpus
should be gathered and adapted, and it should be executed in different environments.
The results obtained should then be analyzed to determine the effectiveness of the ap-
proach.

2.2 Related Work

In this subsection, we will conduct a review of background and related works. Firstly, we
will discuss the general design of the LLVM Project and its key features that are relevant
to our study. Secondly, we will delve into the concept of atomic orderings in LLVM, their
various types, and their applications. Finally, we will conduct a comprehensive analysis
of the literature in our field of study, specifically, compilation schemes for programming
languages.

2.2.1 The LLVM Project

We will commence with an overview of the LLVM project, which ”is a collection of mod-
ular and reusable compiler and toolchain technologies” [34]. The LLVM project enables
the development of compilers for diverse programming languages, such as Kotlin/Native,
Java, C/C++, Rust, Objective-C, Swift, Haskell, etc. Additionally, it makes it possible to
compile, debug, and analyze C/C++/Objective-C programs while providing a broad range
of libraries for interpretation, optimization, and linking code.

For our research, two components of LLVM are particularly relevant. Firstly, the LLVM
Core libraries allow for code generation, compilation, and optimization of LLVM interme-
diate representation (LLVM IR), thereby serving as a backend for implementing other
languages, particularly Kotlin/Native. Secondly, the Clang compiler is a widely used and
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efficient front-end compiler for C/C++/Objective-C to LLVM IR, backed by the same LLVM
Core libraries. In other words, Clang enables C-like languages to be compiled with the
same optimization pipeline as Kotlin/Native due to the same backend. Hence, we can ex-
periment using the C language and the Clang compiler to test the behavior of the LLVM
backend and, consequently, the optimizations applied in Kotlin/Native.

2.2.2 LLVM Atomic Orderings and Memory Model

Moving forward, let us explore the topic of atomic orderings in LLVM. Within the LLVM,
both the load and store instructions are marked with an atomic ordering parameter.
This parameter defines the instructions’ semantics and provides guarantees regarding
the memory model. From a practical standpoint, atomic orderings impact the way in
which instructions are compiled. In exchange for stronger guarantees, they may introduce
additional synchronization instructions, such as memory barriers, and limit applicable
optimizations. Figure 3 illustrates examples of instructions annotated with various atomic
orderings in LLVM IR [23].

Figure 3: Example of atomic ordering annotations in LLVM IR

In total, there are seven types of atomic orderings, arranged in ascending order of guar-
antee strength (excluding the relationship between Acquire and Release): NotAtomic,
Unordered , Monotonic, Acquire, Release, AcquireRelease and SequentiallyConsistent .
NotAtomic, the weakest of them, does not formally represent an atomicity level since it
denotes its absence. However, for the sake of convenience and consistency with the
LLVM specification [21], we will consider it as an atomic ordering. Next, we will briefly
analyze each of the orderings, although the primary focus of our study is on NotAtomic
and Unordered .

NotAtomic is the weakest mode, used for the most common load and store instructions
which are not atomic in principle. They lack thread safety and place minimal restrictions
on the optimizer, resulting in optimal performance. However, it is important to note that
this mode assumes undefined behavior: ”If there is a race on a given memory location,
loads from that location return undef” [21]. As a result, they are unsuitable for use in safe
languages that do not permit undefined behavior. The LLVM specification suggests that
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for safe languages such as Java, the Unordered mode should be used for loading and
storing any shared variables [21].

The Unordered mode is the weakest atomic mode that guarantees the absence of any
undefined behavior compared to its predecessor, NotAtomic. According to the LLVM
specification, ”a load cannot see a value which was never stored” [21]. However, the
specification cautions that the use of the Unordered mode may result in performance
overhead, particularly when working with 64-bit instructions on ARM. Despite this, Un-
ordered is the bare minimum for safe languages that ”need to guarantee that the gen-
erated code never exhibits undefined behavior” [21]. Hence, we tend to consider the
use of NotAtomic in implementations of Kotlin/Native, GraalVM for Java [11], GHC for
Haskell [33], and Swift implementation for Swift [32] as incorrect.

Finally, let us conclude our discussion of atomic orderings by briefly describing the
stronger modes. The Monotonic mode represents the weakest mode that can be used to
implement synchronization primitives. It guarantees a consistent order of operations for
a specific memory address, also known as the coherence property [1]. The Acquire and
Release modes are paired modes that allow the acquisition and release of resources,
respectively, in order to access other memory with normal loads and stores [21]. Typi-
cally, the Acquire semantics is used to obtain a resource, while the Release semantics
is used to publish a resource. The AcquireRelease ordering provides both the acquire
and release semantics, which is typically used for operations that both read and write to
memory. Finally, the SequentiallyConsistent ordering provides the strongest guarantees
for shared memory access instructions. As stated in [21], it ”guarantees that a total
ordering exists between all SequentiallyConsistent operations,” thus ensuring sequential
consistency.

Figure 4: Store Buffering litmus test

Demonstration of how atomic ordering guarantees work can be conveniently illustrated
using litmus tests, which are small programs that exhibit different outcomes depending on
the memory model used. One of the classic litmus tests in this area is the Store Buffering
test [25]. In this example, we analyze the effect of the SequentiallyConsistent ordering
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guarantees compared to Unordered .

Consider the program in Figure 4. The program initializes two memory cells, x and y,
with zeros. Then, the thread on the left writes 1 to the cell x and later reads y into the
local variable a. In parallel, the thread on the right stores 1 to the cell y and reads x into
the local variable b. Running such a program can result in three different outcomes for
the variables a and b: 0 and 1, 1 and 0, and 1 and 1, respectively, depending on the
interleaving of the threads. In fact, there is no interleaving of threads that can result in
two zeros. However, when using Unordered instructions, surprisingly, this outcome may
be observed. The most straightforward occurrence that may happen is the optimization
of instruction reordering, where with a specific variant of thread interleaving, the result
of two zeros is achieved. In contrast, using SequentiallyConsistent ordering, instruction
reordering will be prohibited, thereby making it impossible to achieve the weak outcome
of two zeros.

2.2.3 Studies on Compilation Schemes for Programming Languages

A brief review of similar studies to our own research is conducted in this section. Although
we were unable to locate any studies on the issue of replacing NotAtomic with Unordered
in safe languages, research on compilation schemes for various languages is widely and
actively studied. In this regard, we examine a few of these studies.

In the paper [27], the researchers propose a method of preserving load-store ordering to
eliminate the Out-of-Thin-Air (OOTA) [3] problem in C/C++. They accomplish this by mod-
ifying the LLVM compiler and then measuring the performance of the implementation on
single-threaded C/C++ SPEC CPU2006 benchmarks on ARMv8. It is worth noting that
the authors intended to test the suggested compilation scheme on other architectures
but could not do so due to the complexity of porting the implementation. Additionally, the
authors chose to evaluate the performance of the benchmarks under a single-threaded
scenario, as this represents a worst-case scenario due to the higher relative cost of ad-
ditional instructions and the absence of thread contention that may affect the results of
benchmarks in an uncontrollable manner.

In another work [19], the authors aimed to introduce sequential consistency in Java by
default. To accomplish this goal, they made modifications to Oracle’s HotSpot JVM for the
x86 architecture and evaluated their implementation using Da Capo and Apache Spark
benchmarks on an x86 machine. Similar to the study mentioned above, the authors in-
tended to conduct tests on a different hardware architecture, specifically ARM, but post-
poned it to another article [20] due to the complexity of the implementation process. One
noteworthy aspect of their approach is the use of litmus tests for testing a modified com-
piler’s correctness. These small programs facilitate external validation of the memory
model’s properties, making them an ideal way to verify the correctness of the proposed
compilation scheme’s implementation. Lastly, the authors observed performance costs in
single-threaded benchmarks. They suggest that this is because multi-threaded programs
already have synchronization, which implies that adding new synchronization instructions
by a modified compiler results in smaller performance difference.

Finally, the article [6] proposes and theoretically proves a novel approach of local data
race freedom semantics, which allows for a clear definition of the behavior of many prob-
lematic programs. The authors implemented their proposed approach in the OCaml com-
piler and evaluated its effectiveness using OCaml benchmarks on ARM and POWER
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machines. In this work, the authors successfully conducted measurements on both x86
and ARM architectures, which is essential in the study of compilation schemes. Further-
more, the authors present theoretical examples of programs with unexpected outcomes
resulting from current vulnerabilities in memory models, supporting their argument for the
development of a new theorem and compilation scheme.

Let us summarize a brief analysis of the existing work in the field of compilation schemes.
First of all, we note that none of the articles reviewed address the specific problem at
the core of our research, namely, the compilation of NotAtomic in safe programming
languages. As far as we are aware, this problem has not been previously investigated.
While the aforementioned works offer compilation schemes for addressing other memory
model issues in other programming languages, they are not directly applicable to our
study.

However, the majority of the research in the field of compilation schemes follows a similar
research plan, as demonstrated in the aforementioned studies. Specifically, researchers
initially propose and describe compilation approaches and schemes, subsequently imple-
menting them in the target language compiler, and finally evaluating the performance of
the implementation on target benchmarks. As can be observed from the research tasks
stated earlier, our study follows the same research plan.

Additionally, our analysis of the related literature enabled us to identify several widely
accepted practices in the field, which we adopted in our study. For instance, when inves-
tigating compilation schemes, it is common practice among researchers to perform tests
on multiple hardware architectures, as these can significantly impact the performance of
the memory model implementation. Another prevalent practice involves presenting the-
oretical examples of programs that exhibit unexpected, potentially harmful behavior to
justify the need for a new compilation scheme. Additionally, litmus tests are often em-
ployed when working with memory models due to their simplicity and demonstrative na-
ture, including their usefulness in testing implementations. Single-threaded benchmarks
are also frequently used to showcase the most significant performance changes, such as
worst-case scenarios. We applied all of these prevalent practices in our study.

3 Assessing Kotlin/Native Compiler Correctness

This section aims to evaluate the correctness of the Kotlin/Native compiler. To achieve
this goal, we will first investigate the possibility of encountering undefined semantics in
the safe Kotlin/Native language when using NotAtomic instead of Unordered . Then, we
will describe our methodology to reproduce these vulnerabilities and report the results.
Finally, we will draw conclusions regarding the correctness of the current Kotlin/Native
compiler based on our findings.

3.1 NotAtomic as a Source of Undefined Semantics in the Safe Language

Safe languages are designed to prevent undefined semantics, but our research demon-
strates that this guarantee can theoretically be violated in the safe Kotlin/Native language.
In this section, we will examine this issue through the example of accessing an array by
index.

An array is a contiguous segment of allocated memory, and accessing an incorrect index
beyond this memory allows access to unallocated memory. This unallocated memory

7



may contain either garbage data or be protected by the operating system. In unsafe
languages, such incorrect memory access results in undefined behavior.

In contrast, safe languages enforce bounds checking when accessing an array by index.
If the bounds are violated, an error is returned to the user. In Kotlin, this error is repre-
sented by the IndexOutOfBoundsException exception. This ensures safe semantics that
protects developers from invalid memory access.

However, our research shows that the safe semantics of Kotlin/Native can still be theoret-
ically violated. Specifically, the use of NotAtomic instead of Unordered can lead to invalid
memory access. Figure 5a presents an example in pseudocode to illustrate this issue.

(a) Source (b) Compiled

Figure 5: Accessing an array by index example in pseudocode

First, the program initializes the array a of size 10 and index i is set to 0. Then one thread
attempts to access the array at index i, while another thread writes an overly large value
to index i. A data race occurs, and depending on the interleaving of the threads, the first
thread may access either the 0-th or the 100-th array cell. However, despite the presence
of a data race, the safe Kotlin language ensures the absence of undefined behavior. In
the latter case, an exception should be thrown.

As demonstrated in the compiled version of the program, presented in Figure 5b, array
access by index is safeguarded by a bounds check. Thus, if the program is called at
the correct index 0, it will execute without issue, while if called at index 100, it will throw
an IndexOutOfBoundsException error. This behavior is expected and guaranteed by the
language.

However, when the NotAtomic ordering is used in a compiler, it can lead to undefined se-
mantics. By default, all accesses to variables are annotated with the weakest, NotAtomic
ordering, which allows for dangerous optimizations such as load rematerialization [21].
This optimization allows the compiler to split one memory read into two. As shown in the
compiled code of the first thread in Figure 5b, the value of the variable i is loaded from
memory into the %r2 register, after which bounds are checked and the array is accessed.
However, in the case of optimization performed, an additional read occurs, marked in
red in the image as %r3 = load i;. Depending on the interleaving of the threads, the
second load may return the value 100, leading to actual invalid access to memory, which
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results in undefined behavior.

The aforementioned example is more likely theoretical, as the load rematerialization op-
timization is typically employed only in more complex programs when there is a scarcity
of free registers. Nonetheless, the LLVM specification formally permits the compiler to
generate such code.

The rationale behind this behavior can be explained by the usage of the undef value
within the LLVM memory model. In the event of a data race, a NotAtomic load operation
returns an undef value. By employing this value, the compiler is effectively allowed to use
any values it desires, even for distinct occurrences of the same undef value. Therefore,
even the example presented in the article [4], which is:

if(t <= 1 && t > 1) printf("Hi");

can produce the output string "Hi" if the variable t holds an undef value. Upon each
access, the undef value can be substituted with any number, either less than or greater
than one.

From the perspective of the LLVM memory model, in our example in Figure 5b, there
is a data race on the variable i. As such, reading it returns an undef value. Subse-
quently, a check for the array bounds, if (0 <= undef < 10), may succeed, despite the
subsequent potentially erroneous access to the array using the undef index.

In order to prevent the undefined semantics of undef values, LLVM provides the Un-
ordered ordering. According to the LLVM memory model, Unordered load-s always
return specific values, thereby providing safe semantics. From a practical perspective,
Unordered is restricted from some of the dangerous optimizations that are permitted for
NotAtomic. Specifically, the specification disallows any transformation that converts one
load or store into multiple operations, narrows a store, or stores an impossible value.
As an example, the ”narrowing an assignment into a bitfield, rematerializing a load, and
turning loads and stores into a memcpy call” [21] optimizations are not permitted.

Therefore, with respect to the LLVM memory model and theoretical examples, the use
of NotAtomic in safe Kotlin/Native may lead to undefined semantics. Conversely, the
Unordered mode, due to its prohibition of certain optimizations, provides a guarantee of
safe semantics.

3.2 Reproducing Undefined Semantics of NotAtomic in Practice

In the previous subsection, we demonstrated that the use of NotAtomic orderings in
Kotlin/Native can result in undefined semantics. However, it is crucial to determine the
practical impact of this vulnerability to evaluate the potential danger it poses. To achieve
this, we employed various methods.

As we have discussed earlier, the cause of potential undefined semantics in Kotlin/Native
is the dangerous optimizations that can be performed with NotAtomic operations. Hence,
we initially attempted to establish the real-world list of optimizations applicable in practice.
To achieve this, we carefully analyzed the LLVM codebase. Despite conducting extensive
searches in both the primary codebase [35] and tests [24], and reaching out to a devel-
oper for assistance1, this approach proved to be unsuccessful. The LLVM codebase is
vast, intricate, and inadequately documented, rendering it challenging to extract relevant

1The post by john-brawn-arm on LLVM Discussion Forums.
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information. Thus, further research is required, and this approach remains a prospective
subject for future investigation.

Another method we pursued was to seek the views of the LLVM developer community
regarding the use of potentially hazardous NotAtomic orderings. However, multiple at-
tempts2,3 resulted in varying opinions. Some developers were relatively confident that
the vulnerability was reproducible, while others argued that the compiler was too conser-
vative to make potentially dangerous optimizations.

Finally, an alternative approach was to conduct our own experiments to determine the ex-
istence of a vulnerability in practice. This involved creating code examples that would re-
produce the undefined behavior that arises from using NotAtomic instead of Unordered .

To empirically examine undefined semantics in practice, it was necessary to focus on
specific optimizations that trigger such behavior and try to implement code where such
optimizations are applied. We selected the load rematerialization optimization as a prime
candidate for experimentation, as it has been frequently cited in the literature as a poten-
tial source of undefined behavior [2, 6].

The load rematerialization optimization entails splitting a single NotAtomic read into two
during the compilation process. This optimization can prove beneficial for the compiler
when there is a shortage of available registers. By freeing up the register that initially held
the value, it can be utilized for other operations, while the value can be read again from
memory in the future if required. However, this optimization can also create a vulnerability
in scenarios where multiple threads concurrently access the same memory location. In
such cases, two separate reads may return different values instead of the expected iden-
tical value assumed by the compiler. Therefore, our primary objective in this study was
to reproduce concurrent access to a variable with a data race, thereby inducing pressure
on the register allocator.

The experimental design is illustrated in Listing 1, utilizing C-like pseudocode for simplic-
ity. Two threads concurrently access a shared global variable. The writer thread stores
a new value, while the reader thread reads the value and subsequently writes it to every
element of a designated output array. The expected behavior is that all elements of this
array are equal: either the reader thread reads the initial value of the global variable or
the value stored by the writer, and then writes it to each cell of the array. However, when
the load rematerialization optimization is applied, the reader thread’s consecutive reads
(first from the shared memory and then from the first read saved locally) may be split into
two separate global reads, which allows the reader thread to read two different values –
one before the writer’s store and another after it.

Furthermore, to induce the compiler to apply the load rematerialization optimization, it
was essential to create pressure on the register allocator. To achieve this, the reader
thread performs some useless operations on the registers that the compiler will not con-
sider redundant, such as copying the elements of one array to another through indices in
local variables.

Additionally, to increase the likelihood of concurrent execution by both the reader and
writer threads, each thread executed a useless loop of random length before starting its
work. Finally, the output array for the reader was kept relatively short to ensure that the
execution times of the reader and writer threads did not differ significantly.

2”Register Spilling, Rematerialization, and Racy Accesses Discussion” on LLVM Discussion Forums.
3”Atomic Ordering: Non-atomic vs Unordered Discussion” on LLVM Discussion Forums.
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1 #define DUMP_N 4

2

3 int shared_var = 0;

4

5 void* reader_thread() {

6 int dump[DUMP_N] = {0};

7

8 // the first read from shared_var

9 int t = shared_var;

10

11 for (int i = 0; i < DUMP_N; ++i) {

12 // put pressure on the register allocator

13 // ...

14 // read from t, which the compiler may replace with the second read of shared_var

15 dump[i] = t;

16 }

17 for (int i = 0; i < DUMP_N; ++i) {

18 if (dump[i] != dump[0]) printf("Gotcha!");

19 }

20 }

21

22 void* writer_thread() {

23 // write to shared_var

24 shared_var = 42;

25 }

Listing 1: Pseudocode of the load rematerialization optimization experiment

We conducted an experiment using Kotlin/Native and executed it with compiler version
1.7.20 on an x86-64 machine [30]. Unfortunately, we were unable to reproduce the ex-
pected undefined behavior. Furthermore, upon analyzing the generated bitcode, we ob-
served that regardless of the pressure on the registers, there was only one load operation
for the global variable. Therefore, the desired optimization was not performed.

Subsequently, we attempted to replicate the experiment using a different setup, specif-
ically, the C language. For C, we used the Clang LLVM compiler [5], which shares the
same LLVM backend as Kotlin/Native. This similarity implies that the dangerous opti-
mizations we aimed to detect in the Kotlin/Native compiler should also be present in
Clang LLVM. Furthermore, the C language is closer to assembly language, enabling
greater control and transparency when conducting an experiment. Lastly, the analysis
of compiler-generated code can be performed at an even lower level, via a tool such as
Godbolt Compiler Explorer [10]. Therefore, conducting the experiment in C appeared to
be more promising.

However, similar to the Kotlin/Native experiment, the results of the experiment in C, com-
piled by Clang LLVM 15.0.0 on an x86-64 machine, demonstrated that the rematerial-
ization optimization was not performed. An analysis of the assembler [26] revealed that
when there was no pressure on the register allocator, the value of the global variable was
read into the register once and used from there, as expected. In the case of a shortage of
available registers, the value was read into a stack slot once and utilized from there. Thus,
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the LLVM compiler, in practice, proved to be more conservative than its own specification
by abstaining from risky load rematerialization.

3.3 Conclusions

As a result, the experiment has confirmed the hypothesis of certain community develop-
ers regarding load rematerialization optimization: the LLVM compiler tends not to per-
form it in practice. As future work, further examination of other dangerous optimizations
is necessary. Nonetheless, an intermediate conclusion about the conservatism of LLVM
towards optimizations with NotAtomic can already be drawn. This finding, in turn, implies
that the Kotlin/Native compiler does not exhibit problematic behaviors due to NotAtomic
ordering in practice.

4 Implementation of the Atomic Ordering Pass in Kotlin/Native
Compiler

Simultaneously with studying the correctness of the current compiler, the effectiveness
of potentially replacing NotAtomic accesses with Unordered was investigated. To con-
duct this analysis, it was necessary to develop a compiler pass within the Kotlin/Native
compiler.

4.1 Implementation Details

The Kotlin/Native compiler pipeline is composed of a series of sequential phases, each
of which may include smaller phases and passes. A pass refers to a specific set of
operations executed while traversing the internal representation of the input code. Fig-
ure 6 illustrates an example of a compiler pipeline arrangement, displaying the drop-
down of phases. The top-level phase, backendCodegen, is responsible for the LLVM
code generation of bitcode from the Kotlin IR (Intermediate Representation) and its pro-
cessing. As shown in the figure, it comprises smaller phases, the last of which is the
bitcodePostprocessingPhase. The latter primarily optimizes the initially generated bit-
code and comprises even smaller phases, each serving a distinct purpose, which we
discuss in the following paragraphs.

In order to replace all memory accesses of a given atomic ordering with another, specif-
ically, replacing NotAtomic memory accesses with Unordered , an Atomic Ordering Pass
was developed. The approach involved iterating through all suitable instructions, such
as NotAtomic load and store, in a single pass of the internal code representation and
modifying their ordering mode to the desired one, such as Unordered . It should be noted
that the focus of this investigation was on evaluating the performance of compiled pro-
grams rather than the compilation speed, and thus, the implementation’s efficiency was
not a crucial factor. Nevertheless, the implementation did not result in any noticeable
slowdown during compilation.

The primary implementation code for the Atomic Ordering Pass, which substitutes No-
tAtomic with Unordered , is depicted in Listing 2 within the runOnModule function. The
implementation closely follows the algorithmic description outlined earlier. Specifically,
the code first iterates over all instructions in the module, subsequently filters the relevant
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1 class ChangeAtomicOrdering() {

2 private var replacedAccessesCount = 0

3

4 fun runOnModule(module: LLVMModuleRef, llvmTargetData: LLVMTargetDataRef) {

5 getFunctions(module)

6 .flatMap { function -> getBasicBlocks(function) }

7 .flatMap { block -> getInstructions(block) }

8 .filter { inst ->

9 isLoadOrStoreInst(inst) &&

10 isSuitableType(inst) &&

11 isByteSized(inst, llvmTargetData) &&

12 isPowerOfTwoSized(inst, llvmTargetData)

13 }

14 .forEach { inst ->

15 if (LLVMGetOrdering(inst) ==

16 LLVMAtomicOrdering.LLVMAtomicOrderingNotAtomic) {

17 LLVMSetOrdering(inst, LLVMAtomicOrdering.LLVMAtomicOrderingUnordered)

18 replacedAccessesCount++

19 }

20 }

21 println("Replaced accesses: $replacedAccessesCount")

22 }

23 }

Listing 2: Simplified version of the Atomic Ordering Pass implementation

instructions, and finally replaces instances of NotAtomic with Unordered for those in-
structions. Additionally, the replacedAccessesCount counter is maintained to ensure the
presence and number of modifications. Furthermore, the substitution of other atomic
orderings requires the alteration of only a few lines of code that specify the desired
orderings. For example, to replace NotAtomic with the strongest ordering that guar-
antees sequential consistency, one can simply replace LLVMAtomicOrderingUnordered

with LLVMAtomicOrderingSequentiallyConsistent in the aforementioned listing. This
feature proves particularly beneficial in the further testing of the implementation.

Furthermore, the filtering conditions are noteworthy. In addition to the self-explanatory
isLoadOrStoreInst check that filters the load and store instructions, there are other
checks such as isSuitableType, isByteSized, and isPowerOfTwoSized. The first con-
dition ensures that the value in the instruction is either of floating-point, integer, or pointer
type. The second checks that the size of the memory area in bits is a multiple of bytes. Fi-
nally, the third condition verifies that the bit length is also a power of two. All these checks
were included out of necessity as the LLVM compiler generated errors with detailed re-
quirements for instructions modified by the Atomic Ordering Pass. Namely, further com-
pilation to machine code supports annotating with atomic orderings only instructions of
suitable types and sizes. At present, the implemented filtering checks are adequate for
performing correct replacements on all libraries and benchmarks studied in this research.

In order to ensure proper invocation of the implemented Atomic Ordering Pass, a trivial
changeAtomicOrderingPhase phase was wrapped around the call to the runOnModule

function, similar to the pre-existing code in the compiler. The resulting code was then
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Figure 6: Kotlin/Native compiler pipeline with the pass being injected

injected into the appropriate top-level phase, as depicted in Figure 6. We will now provide
a brief overview of the phases illustrated in the diagram to support the correctness of the
Atomic Ordering Pass injection.

As previously mentioned, the top-level backendCodegen phase is responsible for gener-
ating LLVM bitcode from Kotlin IR and performing its subsequent processing. There-
fore, any bitcode handlers, such as the Atomic Ordering Pass, must be included in this
top-level phase. Moving one level deeper, the backendCodegen phase is comprised of
several smaller phases. The first three phases prepare for bitcode generation, with the
bitcodePhase subsequently generating the primary bitcode directly from Kotlin IR. The
following two phases do not alter the bitcode; the first verifies it, while the second saves
it at the user’s request. During the linkBitcodeDependenciesPhase, all dependencies
present in the generated bitcode are linked. Finally, the bitcodePostprocessingPhase

completes the bitcode processing and invokes LLVM optimizations.

It is essential that the Atomic Ordering Pass runs on the most complete version of the bit-
code, with all dependencies resolved, in order to have access to all program instructions.
Thus, the changeAtomicOrderingPhase must be placed after the bitcodePhase, which
generates the first bitcode version, and after the linkBitcodeDependenciesPhase, which
resolves its dependencies. Therefore, changeAtomicOrderingPhase must be injected
inside bitcodePostprocessingPhase, which performs the final bitcode processing.

Finally, let us briefly examine the bitcodePostprocessingPhase internals. The phases
checkExternalCallsPhase and rewriteExternalCallsCheckerGlobals are paired to-
gether to process and verify external calls. The bitcodeOptimizationPhase then ex-
ecutes the LLVM optimization pipeline on the bitcode, while the subsequent phases,
namely, removeRedundantSafepointsPhase and optimizeTLSDataLoadsPhase, perform
additional optimizations related to eliminating unnecessary safepoints (points in the pro-
gram that enable the garbage collector to perform) and reducing the number of thread
data loads. If enabled, the coveragePhase instruments code to enable coverage data
collection at runtime.

The primary effect of replacing atomic orderings is on the available optimizations, and
thus, the Atomic Ordering Pass should be executed before the optimization phase, i.e.,
before the bitcodeOptimizationPhase. The remaining phases, as evident from their
description, are independent of the atomic orderings of load / store instructions and
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do not affect them. Therefore, the final location of the changeAtomicOrderingPhase,
as illustrated in Figure 6, permits the implementation to fully apply the new compilation
scheme while remaining consistent with the rest of the compiler pipeline.

4.2 Testing the Implementation

The Atomic Ordering Pass implementation needed to be tested. This included verifying
both that the replacement of NotAtomic with Unordered was actually executed on pro-
grams compiled by the modified compiler and that the intended changes impacted the
behavior and performance of the compiled program. We accomplished this by analyzing
the generated bitcode, measuring the execution time of simple programs, and conduct-
ing litmus tests to observe changes in the memory model. In the following section, we
elaborate on the details of the testing process.

It is worth noting that testing was conducted in different environments, including Linux x64
and MacOS Arm64. As previously discussed, hardware memory models can affect pro-
gram behavior, therefore it was essential to evaluate the implementation on distinct archi-
tectures. These environments were chosen due to their popularity in real-world systems,
their common use in related studies, and their accessibility. We created a comprehen-
sive guide [31] with instructions for building and running the modified compiler on these
environments to facilitate the testing process.

The first step of our testing process was to validate the generated bitcode and ensure that
the substitutions made to atomic orderings were indeed observable in the bitcode used
for program compilation. Moreover, it was crucial to learn how to obtain the bitcode of a
program after the optimization pipeline to analyze the changes in applied optimizations
caused by the replacements of atomic orderings. This would also require obtaining a
human-readable bitcode.

However, using only the available tools of the Kotlin/Native compiler, it was not possi-
ble to obtain the desired bitcode. Some tools did not support optimization mode, while
others did not consider optimizations, and yet others returned the full version of the bit-
code, which was unreadable because of large size of generated bitcode due to the linked
libraries. To overcome this, we developed bash and Python scripts that use the LLVM
disassembler utility [22] to convert intermediate compilation files into human-readable
bitcode, and extract the section corresponding to the input program according to specific
labels. As a result, we obtained a convenient way to extract the bitcode of small programs
that is suitable for further analysis.

Using the developed tool, we analyzed the resulting bitcode for various simple programs
that included loops, arithmetic, and array operations. Our analysis confirmed that the
replacements of NotAtomic with Unordered were indeed performed.

The subsequent testing stage aimed to validate whether the replacements performed by
the Atomic Ordering Pass were reflected in the resulting executable programs. This in-
volved observing the impact on the executable programs themselves, such as alterations
to memory access assurances and performance.

To test the change in memory access strictness, a well-known Store Buffering litmus test
was compiled with two versions of the Kotlin/Native compiler: a regular one and a modi-
fied one that replaces all NotAtomic accesses with the strongest SequentiallyConsistent
ones that guarantee sequential consistency. The result of running the litmus test compiled
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with a regular compiler showed weak behavior. In contrast, the sequentially consistent
variant, which forbids such weak behavior, did not show weak results. Thus, the effect of
changing the guarantees of memory access was observed.

To check changes in performance, a simple program was implemented that sums 109

array elements, and its execution time was measured on average over five runs using
bash scripts. A program compiled with a regular compiler was compared to a modified
one that replaces NotAtomic with SequentiallyConsistent as the strongest and, therefore,
most performance-influencing mode. As a result, a difference of 5/26% (with/without -opt
flag) slowdown on the Linux x64 machine was observed, which seemed sufficient for this
test.

Overall, we conducted tests on the Atomic Ordering Pass (AOP) using small programs
and implemented scripts. Our testing approach enabled us to observe a direct alteration
in atomic orderings within the generated bitcode and the expected impact on program
behavior. Furthermore, the testing process involved configuring the building process,
including the usage of Gradle and various compiler run modes and flags. Thus, a suitable
environment for further experiments was created [31].

5 Evaluating Modified Kotlin/Native Compiler Performance

In this section, we will discuss the evaluation of performance changes resulting from re-
placement NotAtomic with Unordered made to the Kotlin/Native compiler. Firstly, we
formulate the primary research questions and hypotheses that form the basis of the
experiment. Subsequently, we delve into the experimental design, elaborating on the
methodologies, testing framework and dataset employed to address the research ques-
tions. Furthermore, we discuss the process of adaption of the dataset selected for bench-
marking purposes. Finally, we analyze the results obtained and conclude on the efficacy
of replacing Unordered with NotAtomic.

5.1 Evaluation Research Questions and Hypotheses

Let us begin by defining the precise objective of the performance evaluation. This study
primarily focuses on investigating the feasibility of replacing the NotAtomic ordering with
Unordered in Kotlin/Native. Hence, the main goal of benchmarking is to quantify the
performance degradation resulting from the modifications made to the compiler.

In addition, our secondary research objective is to identify the factors responsible for the
performance slowdown associated with the compilation and optimization of code using
Unordered . The findings of this investigation will allow us to draw conclusions about
the implementation of Unordered in the LLVM compiler, which can be utilized to analyze
compilation schemes in other LLVM-based language implementations

Let us now proceed to the hypotheses that form the basis of our experiments. As pre-
viously discussed, the distinction between the NotAtomic and Unordered orderings, as
stated in the documentation, lies in the applied optimizations. Moreover, NotAtomic mode
offers only a limited set of optimizations that are not accessible in the Unordered mode.
Furthermore, these optimizations are localized, affecting only a subset of instructions.

Consequently, the distinction between NotAtomic and Unordered orderings is anticipated
to be less pronounced in the context of large-scale real-world programs. Thus, the ex-

16



periments will focus on micro-benchmarks, which are tiny programs designed to primarily
evaluate the performance of individual language components. Examples of such micro-
benchmarks include iterating over array elements and computing their sum, concatenat-
ing strings, and invoking a function with default arguments.

The subsequent hypothesis pertains to the multithreading of tests. It is crucial to highlight
that the altered compiler substitutes NotAtomic with Unordered in any program, including
single-threaded ones, as it lacks the ability to distinguish between them. Thus, we can
utilize both single-threaded and multi-threaded programs for our experiments.

First and foremost, multi-threaded programs generally possess a higher number of syn-
chronization elements, restrict the compiler from applying various optimizations. As the
objective of measuring NotAtomic to Unordered change is to evaluate the impact of op-
timizations, it is anticipated that single-threaded programs would encounter fewer limi-
tations and exhibit more significant performance degradation. Secondly, multi-threaded
tests are commonly regarded as being susceptible to higher levels of noise arising from
thread contention [27].

Based on the formulated hypotheses, it is expected that single-threaded micro-programs
will display the most significant performance changes with lower levels of randomness.
On the other hand, the performance of multi-threaded micro-programs and real-world
macro-programs is anticipated to undergo relatively fewer changes.

Finally, we propose hypotheses regarding the expected outcomes of the experiments.
The conclusions derived from the ”Assessing Kotlin/Native Compiler Correctness” sec-
tion indicate that LLVM demonstrates a higher level of caution compared to the specifi-
cation, as it tends to avoid employing potentially risky optimizations. Consequently, the
actual disparity in optimizations employed in practice, and thus the performance variation
between Unordered and NotAtomic, may not be as significant.

In contrast, during correspondence with Soham Chakraborty, the author of the article [4]
and an active researcher in the field of the LLVM memory model, it was noted that, to
the best of their knowledge, LLVM treats the Unordered ordering overly-conservatively.
Specifically, LLVM prohibits all forms of reordering and elimination transformations on
operations marked with the Unordered annotation. This suggests that substituting No-
tAtomic with Unordered would potentially impose more restrictions on optimizations than
mandated by the specification, leading to a noticeable performance degradation.

5.2 Design of Evaluation Experiments

Let us now delve into the description of the experimental approach designed to address
the research questions at hand. Based on the formulated hypotheses, our focus lies on
single-threaded micro-benchmarks as the target tests for the experiments.

Furthermore, as the second phase of the experiment, a comparative analysis of the bit-
code was conducted for programs exhibiting the most pronounced performance degra-
dation. Specifically, we compared the bitcode version compiled by the baseline compiler
with the version compiled by the modified compiler. Such a comparison aimed to reveal
the difference in the applied optimizations, thereby identifying the underlying causes of
the performance slowdown.

Hence, the primary experiment entails comparing the launch of single-threaded micro-
benchmarks on the baseline and modified versions of the Kotlin/Native compiler, followed
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by an in-depth analysis of the bitcode of programs with the most noticeable performance
degradation.

In order to validate our selection of single-threaded micro-benchmarks as target tests, we
also planned to conduct performance experiments for multi-threaded tests and real-world
macro-programs. Our intended outcome was to observe relatively smaller changes in
performance during these experiments as compared to the target case.

5.2.1 Environment’s Technical Profile

Prior to discussing the benchmarks, we present a concise overview of the technical
characteristics of the utilized environment. The experiments were conducted using the
Kotlin/Native compiler version 1.7.21, which was built from the Jetbrains/kotlin [13]
repository on December 6, 2022. As previously discussed, when conducting experiments
on compilation schemes, it is beneficial to consider different computer architectures. Two
notable architectures in this context are x86 64 and Arm, both of which are widely used
and exhibit significant differences in their memory models. Thus, two machines were em-
ployed for the experiments, and their respective technical specifications are outlined in
Figure 7.

Figure 7: Technical specifications of the machines used in the experiments

Furthermore, it is important to note that Ubuntu WSL 2 on Windows 11 was employed
as the Linux x64 environment, as indicated in the aforementioned table. While using a
modern and efficient WSL still incurs certain performance changes, it fully possesses the
properties of the x86 64, making it suitable for our experimental purposes.

5.2.2 Exploring Kotlin/Native Benchmarks as a Testing Framework

As the fundamental framework for conducting the experiments, the Kotlin/Native bench-
marks were selected. These benchmarks consist of 240 performance tests along with
the necessary infrastructure for their execution, which the Kotlin/Native compiler team
uses to evaluate the project’s performance. The benchmarks and tools required for their
execution can be accessed in the open-source Kotlin repository on GitHub [16].

The Kotlin/Native benchmarks possess several qualities that make them the best choice
for our experimental investigations. Firstly, they satisfy our target requirements as they
already comprise a comprehensive set of micro-benchmarks, with the majority of them
being single-threaded. Secondly, to the best of our knowledge, these benchmarks are
the only open-source benchmarks specifically designed for Kotlin/Native, covering a wide
range of language constructs. This extensive coverage enhances the likelihood of identi-
fying programs that exhibit significant performance variations and facilitates drawing con-
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clusions regarding the overall impact of modified compilation schemes on Kotlin/Native.
Lastly, the Kotlin/Native benchmarks possess a well-established and thoroughly docu-
mented infrastructure that facilitates the execution of tests on different platforms, gener-
ates visual reports to analyze the results, and allows for the seamless integration of new
tests.

The Kotlin/Native benchmarks framework has the following structure. Broadly speaking,
it computes scores for each test in a sequential manner, recording the results in a report.
The score calculation process involves the following steps. For a given number of at-
tempts attempts (set to 20 by default), the framework measures the execution time of the
test in nanoseconds. Subsequently, it calculates both the average and variation of these
measurements and converts them to microseconds, which serves as the final score.

Delving deeper into a singular test measurement, the process unfolds as follows. Firstly, it
initiates a warm-up phase, executing the test a predetermined number of times (defaulting
to 10). Following the warm-up phase, the framework restarts the test, and if the execution
time is less than one second, the framework employs a specialized formula to calculate
the desired number of iterations. Finally, the framework measures the execution time in
nanoseconds for the computed number of test iterations and calculates the average of
these measurements.

Thus, to enhance result accuracy, the framework employs repeated executions and warm-
up runs, a well-established practice commonly employed in language benchmarking,
such as Java [9]. Furthermore, the Kotlin/Native benchmarks themselves are catego-
rized into distinct groups, and relevant information regarding these groups is presented
in Figure 8.

Figure 8: Test groups in Kotlin/Native benchmarks

However, the Kotlin/Native benchmarks suffer from a few drawbacks that we needed to
address. The first limitation was the absence of readily available tools suitable for au-
tomating the experimentation process. While the project had all the requisite programs,
configuring a pipeline that could launch benchmarks automatically with customizable con-
figurations and report generation was necessary. To address this limitation, we created a
series of bash scripts for both machines and created documentation for their usage [31].
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The second drawback encountered in Kotlin/Native benchmarks was the issue of noise.
Despite the implementation of the techniques within the project aimed at mitigating this
problem, our initial runs still exhibited considerable levels of noise during experimentation.
In order to assess the extent of this noise, we performed several tries of two separate
runs of the entire framework on the same Kotlin/Native baseline compiler. Preliminary
experiments showed that on a MacOS Arm64 machine, each run had approximately 5% of
tests with results displaying differences in execution time ranging from 1% to a maximum
of 17%, while on a Linux x64 machine, about 11% of tests exhibited differences from 1%
to a maximum of 50%. Furthermore, this noise was observed randomly across different
tests, with its absolute value being comparable to replacing NotAtomic with the strongest
SequentiallyConsistent ordering, which caused differences in benchmark results up to
90% and 70% on MacOS Arm64 and Linux x64, respectively.

While the presence of noise did not affect the stage of analyzing the bitcode, it hindered
the acquisition of reliable estimates regarding performance changes. To mitigate this
problem, we employed several techniques to reduce noise in Kotlin/Native benchmarks,
which will be elaborated on in the subsection 5.3.

5.2.3 Acquiring a Dataset of Multi-threaded Benchmarks

While there exist several widely recognized projects [17, 18], that support Kotlin/Native
and employ multithreading, they primarily offer only correctness tests that are not well-
suited for evaluating performance. Thus, we implemented custom micro-benchmarks that
were specifically designed to assess concurrent behaviors. The Kotlin/Native benchmark
framework facilitated the integration of these tests into a robust benchmarking infrastruc-
ture.

For our multi-threaded benchmarks, we adapted existing tests from the Kotlin/Native
benchmark suite. Specifically, we utilized the single-threaded tests belonging to the
Ring::ForLoops group, which computes the sum of elements in arrays of different prim-
itive types. We selected these tests for several reasons. Firstly, they are simple and
focused on the fundamental design of the language. Secondly, during our preliminary
experiments, these tests consistently exhibited significant changes in performance when
replacing NotAtomic with the Unordered . Thus, we regarded the Ring::ForLoops tests
as a worst-case scenario, where the effects of the changes would be most pronounced.
To further expand our test suite with similar behavior, we developed additional multi-
threading micro-benchmarks that specifically targeted the optimizations available for No-
tAtomic in comparison to Unordered .

Our initial experiments have validated the effectiveness of the implemented benchmarks
in executing the designated tasks. These tests demonstrated relatively low levels of
noise compared to the only existing multi-threaded test within the Kotlin/Native bench-
mark suite. On average approximately 17% of the implemented tests exhibited a noise
level of around 4-5%, with the highest observed noise level reaching 11%. In contrast, the
multi-threaded Ring::SplayWithWorkers test consistently displayed a significantly higher
noise level of 48%. Moreover, the specifically designed tests aimed to highlight the impact
of variations in optimizations between NotAtomic and Unordered , revealed a significant
performance change when executed using the modified compiler. Thus, we effectively
designed and prepared an experiment involving multi-threaded micro-benchmarks.

Regrettably, our search for a suitable real-world macro-program for benchmarking pur-
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poses has not yielded satisfactory results thus far. Nonetheless, we intend to pursue
this experiment in the future. We identify the Ktor framework [18], widely used for con-
structing server applications, as a promising candidate due to its popularity and high-
performance capabilities.

5.3 Mitigating the noise in Kotlin/Native benchmarks

We will now delve into a discussion on the observed noises encountered throughout the
study. Our observations revealed the presence of two distinct types of noise: consistent
noise in certain tests and significant score discrepancies, reaching approximately 50%
and representing isolated outliers. Importantly, occurrences of both noise types were
mostly observed intermittently between different runs of all benchmarks. In contrast,
when the framework executed repeated test attempts to refine the outcome, minimal de-
viations in execution times were observed, indicating their consistency. Consequently, it is
reasonable to infer that the predominant cause of the observed noise can be attributed to
global factors, such as CPU throttling or incomplete release of resources between tests,
potentially arising from bugs in the garbage collector.

In order to address the issue of noise, we employed the technique of aggregation across
multiple runs as our primary approach. Specifically, as previously described, noise pre-
dominantly arises between runs of the entire test suite. Consequently, we could mitigate
this issue by averaging the results obtained from multiple such runs. This approach
serves two primary purposes. Firstly, by utilizing an average, we are able to effectively
eliminate sporadic random outliers. Secondly, through the calculation of variance, we can
identify consistently noisy tests and interpret their results with enhanced caution. Despite
the significant time cost associated with the proposed approach, it helped us to largely
mitigate the adverse effects of noise on the final outcomes.

Nevertheless, we also made efforts to mitigate the impact of noise and minimize its
absolute values in general by adjusting the internal parameters of the benchmarks.
Specifically, in addition to the attempts parameter, which determines the number of
runs for each test, we found the benchmarkSize parameter that establishes the size of
each individual test within the main Ring suite. For instance, in tests belonging to the
Ring::ForLoops subgroup, the benchmarkSize parameter specifies the size of the array
used for calculating the sum, while in tests from the Ring::Euler subgroup, it represents
the number of iterations for mathematical algorithms. We posited that increasing the
number of runs for each test could further refine the scoring calculation, while change of
the test sizes could enhance their resilience against external factors, thus reducing over-
all noise. This approach was considered potentially advantageous for consistently noisy
tests that generate fluctuations owing to their intrinsic nature, which could be related to
their size.

We conducted a preliminary investigation to assess the impact of the attempts and
benchmarkSize parameters on the level of noise. Due to significant time constraints,
we performed a single measurement for each unique combination of these parameters.
Furthermore, we intentionally limited the range of benchmarkSize parameter variations
to avoid potential occasions of extreme phenomena, such as resource scarcity or inade-
quately short runtime for accurate measurements. Notably, the MacOS Arm64 platform
exhibited significantly lower levels of noise compared to a Linux x64 machine, and only
negligible changes were observed in response to parameter adjustments. Therefore, the
majority of experiments were conducted on a Linux x64 machine.
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Figure 9: Impact of attempts and benchmarkSize parameters on a noise
level of Ring tests on Linux x64 machine

The figures presented in Figure 9 depict the correlation between the attempts parameter
and the number of Ring tests affected by noise (i.e., those exhibiting a difference greater
than 1%), as well as the median absolute noise value. These variables demonstrate the
average noise level, which we aimed to minimize in this experiment. Each line on the
plot corresponds to a distinct configuration of the benchmarkSize parameter. The default
value for benchmarkSize is set at 10,000 (x1), and two additional options we tried are
to double (x2) or halve (x0.5) the value. Moreover, the x1-full option represents the
execution of the entire test suite, including tests other than Ring, to validate the absence
of inter-test influences on noise levels.

Despite the experiment’s limitations, the variant with a benchmarkSize multiplied by 2

exhibited a noticeable trend of reduced noise occurrences and lower noise values on av-
erage. This trend reached its optimum at attempts = 30, leading to the selection of this
particular configuration for the final experiments. It is important to note that altering the
benchmarkSize and attempts parameters did not guarantee improved noise reduction in
the final results, but it increased the likelihood heuristically.

The final approach for denoising Kotlin/Native benchmarks involved accurate error anal-
ysis. Each test is associated not only with a score calculated as the average of multiple
attempts runs, but also with its spread. Throughout our experiments, it was observed
that error calculations neglect the measurement accuracy, resulting in errors with abso-
lute values below a nanosecond. As an initial measure, we implemented a minimum error
threshold of 1 nanosecond. Consequently, certain exceptionally fast tests no longer ex-
hibited noise that surpassed the measurement accuracy. In future work, it is essential to
apply statistical techniques to accurately account for all types of errors and incorporate
them in the analysis.

To mitigate noise, we propose employing averaging over complete benchmark runs, en-
abling the removal of outliers and identification of particularly noisy tests. Furthermore,
we have determined the optimal parameter configuration and refined the error calcula-
tion methodology. These advancements are expected to effectively reduce the overall
quantity and magnitude of noise in the final results.

5.4 Experimental Results Analysis and Discussion

In this subsection, we will present the outcomes of the conducted experiments, followed
by providing their potential interpretation and drawing conclusions.
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The focal point of our study was an experiment involving the execution of Kotlin/Native
benchmarks, aimed at assessing the performance degradation of the modified compiler.
As detailed in the preceding subsections, in order to mitigate noise, it was imperative to
conduct multiple complete runs of all benchmarks and subsequently calculate the aver-
age results. We successfully executed a total of 20 runs for both the baseline and modified
compilers on each of the machines. Furthermore, we employed the configuration param-
eters benchmarkSize = 20,000 and attempts = 30 as an optimal setup based on our
earlier preliminary experiments.

We aggregated multiple reports on full benchmark runs using the following procedure.
Firstly, we computed the median value for each test performed on each compiler. As
previously mentioned, Kotlin/Native benchmarks often exhibit sporadic random outliers,
and the application of the median value was intended to mitigate their impact on the final
results. Secondly, we calculated the coefficient of variation for each test, which repre-
sents the ratio of the standard deviation to the mean. This statistical measure provides
a relative estimation of the spread or measurement noise. By estimating the noise level
in percentage, we could compare the noise levels of even very different tests in terms of
scale, as well as provide error estimates for other metrics.

Following this aggregation process, we obtained the finalized dataset [29]. Initially, we
computed the percentage change in the average score of each test when using the mod-
ified compiler compared to the baseline one. Subsequently, we filtered out changes that
can be considered at least moderately significant. Specifically, we retained only those
tests where the percentage of score change exceeded the noise estimation percentage.

Consequently, out of the total of 329 tests conducted on Linux x64 and 351 tests on Ma-
cOS Arm64, 135 and 115 tests respectively exhibited substantial performance differences.
The majority of the remaining tests demonstrated no notable change in performance: 152
tests exhibited a score change of less than 1%, and an additional 38 filtered tests dis-
played a change of less than 5% on Linux x64. Likewise, on MacOS Arm64, 201 removed
tests had a score change of less than 1%, and a further 33 tests exhibited a change of
less than 5%. Among the remaining unfiltered tests, only 4 and 2 tests on Linux x64 and
MacOS Arm64 respectively, displayed a level of noise comparable to the percentage of
changes.

Therefore, our filtering methodology enabled us to retain nearly all tests with significant
performance variations while safeguarding against the influence of noise.

(a) Linux x64 (b) MacOS Arm64

Figure 10: Distribution of tests with trusted performance changes by groups
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(a) Linux x64 (b) MacOS Arm64

Figure 11: Score variations of tests with trusted performance changes

Now, let us proceed to the analysis of the tests that exhibited a noteworthy performance
shift. Figures 10a and 10b illustrate the distribution of tests based on the magnitude of
these changes. In this context, the gray shading labeled as ”0%” indicates a significant but
less than 1% alteration. Figures 11a and Figure 11b present the scores corresponding to
all significant score changes, thereby highlighting the maximum and minimum observed
values.

Performance degradation. The performance degradation resulting from the replace-
ment of NotAtomic with Unordered exhibited a significant impact. Approximately 11%
of all filtered tests exhibited changes exceeding 10% on the Linux x64 platform, while
approximately 9% showed changes exceeding 5% on the MacOS Arm64 platform. More-
over, around one-third of the tests demonstrated slowdowns ranging from 1% to 5% on
both machines.

Performance improvements. Surprisingly, our results reveal the presence of not only
performance degradation but also performance improvement in some tests. However, the
degradation of performance is more pronounced than the improvement, as demonstrated
in the charts. Across both machines, slowed tests are more prevalent, with absolute
values of changes reaching larger magnitudes. Specifically, on Linux x64, performance
degradation of up to 71% was observed, as opposed to improvement of only up to 50%.
On MacOS Arm64, the slowed tests exhibited performance degradation of up to 20%,
while performance improvement was only up to 8%.

Comparison between different hardware. Furthermore, it is crucial to compare the
results obtained on different hardware. The charts indicate that the Arm64 architec-
ture, represented by the MacOS machine, experienced a notably lesser impact when
NotAtomic was replaced with Unordered , compared to the x86 64 architecture repre-
sented by the Linux machine. This observation holds true for both the number of tests
exhibiting score differences and the absolute magnitudes of the changes. Notably, on
the Linux x64 platform, twice as many tests displayed a significant non-zero change, and
the maximum slowdowns and accelerations differed in magnitude by more than 3 and 5
times, respectively.

Multi-threaded benchmarks. Regarding the multi-threaded benchmarks, they gen-
erally substantiated the corresponding hypothesis. Although they exhibited noticeable
changes of approximately 15% on Linux x64 and changes ranging from 3% to 5% on
MacOS Arm64, the single-threaded micro-benchmarks still yielded the most substantial
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score changes, as anticipated.

To investigate the underlying causes behind the obtained results,we conducted a prelim-
inary analysis of the bitcode on several tests exhibiting significant score variations. The
bitcode of two program versions, one compiled with a baseline compiler and the other
with a modified compiler, was compared using a previously developed tool.

In our initial analysis, no significant differences were found in the applied optimizations
within the main bitcode of the tests. However, it is possible that these optimizations, in
fact, were employed in the Kotlin standard library code, extensively used in the tests.
Thus, further investigation into the bitcode of the standard library is required to confirm
this hypothesis. However, performance changes may not be entirely due to bitcode op-
timizations alone, as differences between Unordered and NotAtomic could potentially
arise at a lower level, such as generated instructions during the translation from bitcode
to machine code.

Upon further examination of the bitcode in the performance-improved tests, it became ev-
ident that the majority of instructions with modified ordering were related to accessing the
garbage collector and its associated structures. The garbage collector, as a sophisticated
subroutine tightly integrated into the main program, operates dynamically during runtime,
closely tied to the program’s actions. As a result, even slight modifications introduced by
Unordered compilation to the operations of the garbage collector may inadvertently lead
to positive effects on its functionality, consequently impacting the overall performance of
the entire test.

Nevertheless, analyzing the bitcode of only a limited number of benchmarks does not
provide a conclusive explanation for all the observed effects. As part of future work, we
intend to expand our analysis to encompass a broader range of tests, including the ex-
amination of the standard library linked to them. Additionally, we aim to explore programs
at a deeper level of machine instructions to gain a more comprehensive understanding of
the underlying mechanisms.

In summary, the performance evaluation experiments on the modified Kotlin/Native com-
piler yielded the following findings. The replacement of NotAtomic with Unordered led to
noticeable and consistent performance degradation, observed in approximately 60% of
tests on Linux x64 and 35% of tests on MacOS Arm64. Quantitatively, this degradation
manifested as a slowdown of about 10-20% in roughly 11% of the tests, reaching up to
70% on Linux x64. On MacOS Arm64, the slowdown ranged from 5-10% in approximately
9% of the tests, reaching a maximum of 20%.

Based on the obtained results, it is evident that replacing NotAtomic with Unordered is still
accompanied by significant performance loss and cannot be implemented in the current
Kotlin/Native compiler. Furthermore, these findings support the hypothesis regarding the
insufficient performance of the Unordered implementation in LLVM.

6 Conclusions and Future Work

In this concluding section, we summarize our research findings. Initially, we outline the
tasks that were set at the outset of this work and report on their completion. Next, we
present the overall results obtained, along with their interpretation. Finally, we identify the
tasks that still require attention in future work.
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6.1 Completed Tasks

The purpose of this study was to determine the necessity and effectiveness of replacing
NotAtomic memory accesses with Unordered ones in Kotlin/Native. The following tasks
were completed to achieve this goal.

Firstly, the correctness of the current Kotlin/Native compiler implementation was tested
in practice. This involved studying the LLVM sources, collecting information from the
developer community, and attempting to reproduce the incorrect behavior with specially
implemented code snippets.

Next, the approach was implemented in the Kotlin/Native compiler by understanding
the compiler code base, how different data types accesses are handled, and the or-
der of compilation phases. The modified compiler was tested by implementing tools for
analyzing the final bitcode of the program and measuring the performance of a mock
project. Furthermore, the implementation was set up to be run in different environments
of Linux x64 and MacOS Arm64.

Finally, the impact of the approach on performance was measured by collecting a broad
test corpus consisting of single-threaded and multi-threaded micro-benchmarks. The
tests were adapted: their noise was reduced, execution in different environments was au-
tomated, and the most important tests for analysis were chosen. The benchmark results
were then obtained and analyzed.

6.2 Results and Discussion

Based on the research, the following conclusions were drawn. Despite the hypothetical
possibility of optimizations leading to undefined behavior, we could not reproduce the
vulnerability in practice. Such dangerous optimizations are currently not used in LLVM,
and the compiler acts more conservatively than the specification allows. Replacing No-
tAtomic accesses with Unordered ones results in a performance slowdown of approxi-
mately 10-20% on Linux x64 and 5-10% on MacOS Arm64 across approximately 10% of
the benchmark samples collected. This slowdown can potentially reveal itself in some
real-world programs.

Thus, it is currently unnecessary to replace NotAtomic accesses with Unordered ones.
Nevertheless, according to the specification, NotAtomic accesses remain incorrect. Fu-
ture versions of LLVM may introduce more aggressive optimizations, potentially leading
to undefined behavior. Hence, it is essential to inform the LLVM developers about this
issue and to discuss it with other compiler developers, such as Graal VM.

6.3 Future Work

Further research could involve the ongoing investigation of vulnerabilities in practice,
as well as the exploration of other potentially dangerous optimizations and scenarios.
Improvements to the test corpus can be made by correcting the Kotlin/Native bench-
marks, better parameter tuning, and applying advanced techniques found in state-of-the-
art benchmarking libraries, such as JMH [12]. Additionally, further investigation into other
access modes, such as Monotonic and SequentiallyConsistent , involving the evaluation
of their performance impact, may be required to develop the Kotlin/Native memory model.
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As a continuation of this study, it is also necessary to explore other controversial compi-
lation schemes that arise due to the differences in the semantics of the JVM and LLVM
memory models.
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