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Abstract

The Kotlin programming language can be compiled to multiple platforms, and a single
piece of code is certainly expected to behave similarly on these platforms. However,
making multithreaded programs behave similarly in different environments is a challenge
due to different memory models. A common new memory model is being developed, and
it should be tested whether the Kotlin compiler conforms to it.

In this work, a tool is developed to achieve that, using the concept of litmus tests. To
implement the tool, first the existing litmus testing tools are surveyed. The tool is then
written using the found techniques. Finally, it is used to run a number of tests on the most
recent version of the Kotlin/Native compiler. Some of the discovered behaviors violate the
Java memory model, and should therefore be considered a bug in the compiler.
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1 Introduction

One of the key features of the Kotlin programming language is Kotlin Multiplatform, which
allows to run the same Kotlin code across different platforms, such as Android, iOS,
Windows, and more. It is achieved through compiling Kotlin code in different ways, for
example, into Java bytecode for running on JVM [6], or into a native executable via the
LLVM [12] framework. Naturally, one code fragment is expected to behave in a similar
way on any platform. However, different platforms can have major differences, both in
software and hardware. This difference poses many challenges for the development of
Kotlin compiler. In this work, we will focus particularly on the issue of different memory
models.

For the purposes of this work, we will define “memory model” as follows: a memory
model is the set of rules for the interaction of program threads via shared memory. In
other words, a memory model defines which behaviours are allowed for a multi-threaded
program and which are not. A memory model can be defined on many levels: for a
particular processor, for a programming language, or for some modelling language. The
simplest memory model would be the so-called sequential consistency [11], or SC for
short. Under this memory model, the only allowed behaviours are the ones where the
program performs as if all its instructions were executed sequentially in some order by a
single executor. Here is an example:

x, y = 0;

x = 1;

a = y;

y = 1;

b = x;

Figure 1: Sample program that runs differently
under different memory models

This notation describes a program where two threads run in parallel, as denoted with
parallel lines, with code before parallel lines happening before launching the threads.
Notice how under the SC model it is impossible for this program to end with a == 0 and
b == 0 at the same time.

In the real world, however, the SC model is rarely used, because it limits the performance
of the program by disallowing many compiler optimizations [19, 13, 14]. For example, the
Java language has its own different memory model [15] (called the Java Memory Model,
or JMM), and if the program above is run on JVM, it can in fact end with both a == 0

and b == 0. The behaviors that violate SC are called weak behaviors. This example
clearly demonstrates how the same multithreaded program can behave differently under
different memory models.

Turning back to Kotlin Multiplatform, this change of behaviour poses a problem, because
the main targeted platforms — namely, JVM and LLVM — have different memory mod-
els [15, 12]. This can be especially problematic when sharing libraries across platforms,
as the behavior of the library may be dependent on the underlying memory model. For
example, Kotlin Coroutines library, another key feature of Kotlin, was written based on
JMM. Due to it relying on some aspects of that particular memory model, this library may
require some changes in order to be fully functional on the Native platform. To address
this issue of reusing code, a common memory model for Kotlin is currently being de-
veloped. It will ensure that Kotlin programs produce consistent results across different
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platforms and under different circumstances.

Such a common memory model has to be guaranteed by the Kotlin compiler, which has
to produce programs that conform to the defined memory model. Therefore, the de-
velopment of a common memory model implies modifying the existing Kotlin compiler.
Naturally, any new software has to be tested, and in this case we have to test if a given
version of Kotlin compiler does indeed conform to a given memory model. This kind of
testing is usually done either by providing a formal proof, by testing empirically, or by us-
ing both methods [9]. Formal proofs are deterministic and irrefutable, so they are used
for maximum level of confidence. However, formal proofs for a large enough program can
get quite complex and take too much effort to be practical [9]. The final version of the new
memory model will most likely be verified with a formal proof (moreover, the it may even
incorporate some features specifically for simplifying such a proof), but a similar proof
would not be feasible for the entire Kotlin compiler. Therefore, we will focus on empirical
testing of conformance to a memory model.

Empirically testing a program basically means running this program a large number of
times and checking if no disallowed behaviors appeared. It is important to note that this
kind of testing does not guarantee this program will never produce a disallowed behavior,
but it still can find a number of bugs if they exist [21]. To test conformance to a memory
model in particular, it is useful to run not just any programs, but special small code snip-
pets designed to check some specific aspect of a memory model. These small snippets
are referred to as ”litmus tests” [1], and running them many times (anywhere from tens
of thousands to tens of millions and beyond) is usually called ”litmus testing”. The short
program previously shown in figure 1 is in fact a classic litmus test called ”store buffering”,
or SB for short.

The topic of litmus testing a memory model has been explored in different contexts, such
as programming language memory models or hardware memory models. Accordingly,
there exist various tools for performing litmus testing in these contexts, such as the herd-
tools suite [7] or JCStress [8]. The key point is, though, that none of these tools provide
the functionality necessary for testing Kotlin compiler memory model conformance. The
JCStress tool does exactly what we would like to achieve, but only with Java and heav-
ily relying on Java-specific features. Therefore, though it can help with testing Kotlin/JVM
compiler, it cannot be used for testing Kotlin/Native compiler, which is just as important for
checking the common memory model. The litmus7 of herdtools suite is focused on testing
hardware memory model, and cannot be easily adapted for testing the Kotlin compiler,
while other relevant tools from the suite operate on theoretical memory models.

Therefore, to test the conformance of Kotlin compiler to a memory model, the need for
a custom Kotlin-oriented litmus testing tool arises. The goal of this work is to implement
such a tool, and then use it to perform some tests on the Kotlin compiler.
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2 Related work

Litmus testing is a widely used technique for reasoning about memory models and even
more generally about concurrent programs. The tests themselves can either be actually
run on some hardware, or be used for special analysis called model checking. The latter
is a common technique for developing and testing theoretical memory models, whereas
the former is more useful with working with implementations of these memory models.

To create a custom litmus testing tool, it is necessary to first properly understand what
possibilities do existing tools offer, and which techniques they employ to achieve better
results. This is what is going to be discussed in the following subsections.

2.1 Tools for litmus testing

Here is a short review of the tools commonly used for performing litmus testing. As it was
mentioned previously, there are different kinds of memory models, and also the litmus
testing approach can be applied with different goals. Therefore, each of these tools does
its own thing and deserves a separate description.

2.1.1 herdtools7

The herdtools7 tool suite [7] is the de-facto state-of-the-art tooling for operating with
hardware-level litmus tests. It includes several separate tools aimed at different use-
cases: for simulating theoretical memory models, for generating litmus tests according to
specifications, and more. To provide some examples, it has been used to help develop
ARMv8 memory model [16], explore behaviors of POWER processors [17], test memory
models of various GPUs [3], formalize the Linux kernel memory model [2], or search for
bugs in C compilers [20].

The one specific tool we are now most interested in is the litmus7 tool [4], which can run
litmus tests on hardware. The main aim of this tool is checking the behaviors that appear
in hardware, and as such, it requires the test to be written in assembler-like syntax.
The tool then converts the test description into a C program with some custom macros
inserted. Running the resulting program runs the test defined by the given assembler
description and outputs the encountered behaviors.

Unfortunately, this tool cannot be directly used for the purposes of testing Kotlin compiler,
because it is only aimed at low-level memory models. Still, it is quite important to under-
stand how does this tool achieve its efficiency and which of its approaches can be used
in the case of Kotlin.

2.1.2 JCStress

JCStress [8] is a part of the OpenJDK project1 which, as stated in the project descrip-
tion, aims ”to aid the research in the correctness of concurrency support in the JVM,
class libraries, and hardware”. Unlike herdtools7, JCStress is not intended for any usage
outside of testing the behavior of JVMs (and by extension the hardware there JVMs run
on). In practice, this tool is an advanced Java-oriented litmus test runner which comes
with a large number of predefined tests that explore various aspects of JMM. With the

1https://openjdk.org/projects/code-tools/jcstress/
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help of JCStress, a number of bugs in the implementations of Java standard library was
discovered [18], and further tools for concurrency testing [5] were created.

At the first glance, JCStress looks like the perfect candidate for testing the Kotlin com-
piler, since Kotlin can run on JVM. The problem is, we need a common Kotlin memory
model, which requires testing it not only for Kotlin/JVM, but for Kotlin/Native as well. And
even though it is generally possible to translate Java into Kotlin in order to then run the
same code on a platform other than JVM, JCStress extensively uses JVM features, such
as Reflection API. Therefore, it is not possible to use this tool for testing Kotlin/Native
compiler. Nonetheless, since JCStress achieves a very similar goal in a different context,
it can provide insight for our purposes. Its large set of custom memory model litmus tests
is also very useful as a basis for our compiler testing.

2.1.3 Lincheck

Lincheck [10] is a Kotlin tool intended for testing concurrent algorithms implemented in
JVM-based languages. It allows for stressing the algorithm in a similar fashion to what
running a litmus test looks like, as well as for simple model checking.

While this tool is useful for testing algorithms, in the context of testing the Kotlin compiler
it provides little value. Even though it is mostly written in Kotlin, it still uses a noticeable
amount of Java code, which is the same issue as with JCStress. Moreover, since it
operates on a higher abstraction level compared to litmus tests, it uses techniques that
are not favorable for litmus testing, such as inserting extra memory fences into user code.
In practice, this tool cannot consistently reproduce all behaviors of the SB test, which can
be considered the most basic one of memory model litmus tests. Still, this tool deserves
a mention when talking about litmus testing in general, since it is able to find bugs in
some standard Java concurrent structures.2

2.2 Common techniques

The simplest litmus testing tool is just a loop which repeatedly runs the given litmus test.
However, there are multiple techniques that can be used to achieve much higher fre-
quency of observing more behaviors. They involve artificially inducing thread contention,
trying different thread configurations, and more. By looking into [8], [18], [7], [4] and [9],
we can outline the list of the techniques that can be used in the new tool:

• Allocating many tests at once and running them sequentially in one go. Doing
so removes the need for extra operations like memory allocation during the run,
which in turn decreases the number of memory fences. This approach also stresses
cache hits.

• Occasionally synchronizing threads with a barrier. This prevents one thread from
consistently running ahead of another, which would result in no concurrency at all.
Moreover, it is important to use a barrier with actively waiting threads instead of,
for instance, a pthread one [4]. This is due to some barriers introducing too much
overhead, particularly compared to very lightweight code in litmus tests.

• Manipulating thread affinity. Thread affinity is the set of CPU cores, on which the
thread is allowed to run. Actively manipulating this set allows to make sure that

2https://github.com/JetBrains/lincheck#Example
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some thread configurations are checked. To illustrate, some behaviors may oc-
cur only when the two interacting threads use the same CPU cache of a certain
level [18].

• Addressing false sharing. False sharing happens when two independent variables
are stored in the same cache line, which renders them not independent for some
operations. In practice, this disallows many behaviors, and as such is undesirable
for a litmus testing tool. False sharing can happen particularly often for sequentially
declared and/or allocated variables, which is also the case with litmus tests. Hence
it is important to address this problem. Usually it is done by shuffling the pointers to
the allocated memory chunk.

• Parallelizing the same test. Firstly, this increases the number of tests run, which
in turn increases the probability to see more behaviors. Secondly, this puts some
additional stress on the memory subsystem, which may cause the behaviors that
do not happen under usual conditions.

This certainly is not the full list, but most of the other optimizations are case-specific.
For example, JCStress pays significant attention to forking JVMs with various parameter
configurations, but this cannot be applied to Kotlin compiler case since it doesn’t have as
many concurrency-related parameters.

Aside from these, there are a couple of other common ideas that seem to relate to all
litmus testing tools:

• The results of litmus tests are inherently non-deterministic. The impact of one or
another approach on the resulting test behaviors is basically impossible to defini-
tively predict in advance, or, as [18] puts it, the parameters are an ”educated guess”.
Therefore, all of the options for litmus testing tools are usually left as runner param-
eters.

• Normally we only care if the behavior appears and not now often it appears. At the
same time, we want to make sure that the results are reproducible. Given that, [9]
shows that if a behavior appears just 3 times, the probability of it appearing again
can be estimated a little over 95%. This idea removes the necessity for striving
towards higher and higher frequency of rare behaviors, because there is no direct
link between the frequency of weak behaviors and their count.
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3 Implementation

Any litmus testing tool has at least two parts: a way to define new litmus tests — a test
interface, and a way to run these tests — a runner. Advanced tools may include additional
functionality like data visualization or statistical analysis, but these are not necessary. A
general pipeline of using any litmus testing tool is similar: write some tests according
to provided interface, and then run them with the provided runner, optionally setting run
parameters. Here is how these two key parts are implemented in our new tool.

3.1 Test interface

In general, there is no universal way in which these tests should be defined, except that
defining tests should be at least somewhat user-friendly. The specifics depend highly on
the context: for example, the litmus7 tool from herdtools requires tests to be written in
some subset of assembly code, because it aims at testing hardware memory model. At
the same time, JCStress requires tests to be written as Java classes with multiple custom
annotations, since it aims at JMM and uses code generation under the hood. In our case,
tests must be written in Kotlin, because we are targeting Kotlin compiler in our research.
We also cannot use methods like Java Reflection, which JCStress uses extensively, as
we are targeting Kotlin/Native, and so we cannot simply translate JCStress Java code
into Kotlin.

Kotlin offers a variety of ways that can be used to declare a litmus test, namely via extend-
ing a class, via some DSL3 (another Kotlin feature), or via code generation using KSP.4

We needed to pick one of these methods, which allows for test readability, leaves room
for different features, and does not introduce too much instrumentalization to user code:

• Extending some abstract class is the most straightforward way to define a test.
The key advantage of this method is that local variables provide a simple mapping
between a name and a memory region. However, the syntax is somewhat limited
compared to DSLs.

• After some experimenting with DSLs, it became clear that this method introduces
too much overhead for memory access, which practically reduces the frequency of
weak behaviors even in the most basic case of SB test to zero.

• Code generation can allow to transform user test definition in any way, which gives
maximum flexibility. However, it is also a significantly more complicated method, so
its use has to be justified. After comparing it to class extension, the only reasonable
advantages we found were possibly easier bytecode extraction and possibly more
efficient memory shuffling.

Given the relatively short time span of the project, we decided to not spend time on code
generation and went with classes. To compensate for rigid syntax, we can still use some
of the DSL methods for defining test settings. Here is how the same SB test from 1 is
implemented for the new tool:

3https://kotlinlang.org/docs/type-safe-builders.html
4https://kotlinlang.org/docs/ksp-overview.html
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class TestSB : BasicLitmusTest("store␣buffering") {

// shared variables

var x = 0

var y = 0

// "local" output variables

var o1 = 0

var o2 = 0

override fun actor1 () {

x = 1

o1 = y

}

override fun actor2 () {

y = 1

o2 = x

}

override fun arbiter () {

outcome = o1 to o2

}

init {

setupOutcomes {

interesting = setOf (0 to 0)

}

}

}

Figure 2: SB test defined for the new tool

The exact syntax is still inspired by JCStress, even though we cannot copy its syntax
precisely. The shared variables are simply class properties. The actorN() functions are
the ones that run in parallel, named after JCStress @Actor annotation. The arbiter()

function is run after all actors to collect results, if necessary. The outcome variable (also
named after JCStress @Outcome annotation) is defined in the parent class and can be also
assigned in the actor functions. Lastly, the init{} block can be used to setup additional
test parameters, such as outcome types.

3.2 Test runner

The test runner is the key part of any litmus testing tool, responsible for invoking as many
test behaviors as possible. As mentioned before, there are some techniques to make the
runner more effective, any they have to be used by the new tool. Some of them involve
manipulating threads on a low level, which requires some thread API. Kotlin/Native, how-
ever, does not provide such an option, due to decisions made long before a new common
memory model was proposed. There are two options to overcome this problem:

• Calling pthread API via C interoperability feature of Kotlin. This approach provides
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full control over thread parameters, but there is one thing to be concerned about. To
start a pthread thread, we have to pass in the function of the thread, which would
be a wrapper around user-defined code, with all the data it requires, including the
memory that is going to be stressed. The problem is that we are testing Kotlin
compiler memory model, and after passing all of that data directly to C, it is not
clear if there are no side effects that may influence testing results.

• Using Kotlin/Native Worker class. These Workers are wrappers around platform
threads with very limited functionality, representing something more of an execu-
tor interface rather than a thread. For example, its function is not allowed to cap-
ture any outside values, or there are no functions to set thread affinity, which is
one of the techniques used for litmus testing. However, there is one experimental
platformThreadId property of a Worker, that normally allows to use its underlying
pthread handle. It can be used for calling pthread functions via C interoperability,
allowing almost as much freedom as just using pthread API with no Workers.

We decided to start with Workers, which turned out to provide enough functionality. It is
worth noting that any of these approaches refers only to Kotlin/Native, and is unavailable
in Kotlin/JVM. There is no common thread API for both of these platforms. However, it
is possible to run litmus tests on Java using JCStress, while Kotlin/Native does not have
any such option. Therefore, we will only focus on Kotlin/Native for the time being.

Based on that, a runner was implemented using the techniques discussed in 2.2. There
are some details worth mentioning:

• A custom barrier with actively waiting threads had to be implemented. It can be
done using Kotlin/Native AtomicInt, but one concerning thing is that it has sequen-
tially consistent semantics, which introduces additional memory fences, potentially
reducing the probability of a weak behavior happening. This extra synchronization
is relatively seldom though, and the net gain from any spin-waiting barrier is still
very positive. However, this barrier can also be implemented via C interop, which
allows to use C11 Atomic variables with custom memory ordering. Using these
atomics would introduce less fences than the former method, but at the same time,
using the C interop mechanism may introduce its own overhead. In the end, both of
these approaches ended up being implemented and moved to running parameters
rather than being hardcoded into the runner.

• Setting thread affinity can be done in two ways: random assignment or manually
predefined affinity maps. Concrete affinity maps can ensure that certain arrange-
ments of threads on CPU cores are tested, and it also allows to assign a set of cores
to a thread instead of one core. The disadvantage is that this approach does not
work well with running tests in parallel, because any core can be already assigned
to a thread, and parallel tests can interfere with each other by invoking extra thread
switches and raising a lot of memory fences. Meanwhile, random affinity assign-
ment may not try certain core arrangements, but it does allow for parallel running.
Like with barriers, both approaches were implemented and left as parameters.

• There is one more problem with setting thread affinity which comes from MacOS.
The part of pthread API responsible for setting thread affinity is not available there.
Instead, there is a custom API,5 which is not only different but also lacks some

5https://developer.apple.com/library/archive/releasenotes/Performance/RN-AffinityAPI/

index.html
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features compared to pthread, such as explicitly binding a thread to a specific core.
And even then, it requires to set thread affinity before it starts, while the Worker API
only allows to access the thread handle after the thread is started. Therefore, it is
not possible to support affinity setting on MacOS with the current tool. One way
to resolve it in the future may be to modify the Worker internal code in order to get
access to thread handle before it starts. Note that this is not compatible with pthread
API, which only generates the thread handle upon calling pthread create(), also
immediately launching the thread.

• False sharing is usually prevented by shuffling the locations of stored variables
across a pre-allocated memory chunk. In our case this is problematic because of
class variables being allocated by the compiler and not manually. The test interface
could be extended to include access to an array, but this would clash with defin-
ing variables normally and make the interface less user-friendly. Another way to
override variable allocation is to provide a property delegate (a Kotlin feature). This
approach was implemented a couple of times in different ways, and while it does
solve the false sharing problem, it introduces a lot of overhead in the form of un-
necessary function calls, which in practice leads to large overhead and results in
poor efficiency. The only sensible way to implement decent memory shuffling is
most likely via code generation, which would radically complicate the tool, so the
memory shuffling functionality was left for future work.

• As mentioned in 2.2, the number of parameters available to the user can be not
just significant, but even overwhelming: for instance, if the user is allowed to set
custom affinity maps, just their number alone can be on the order of millions. It is
neither possible to iterate through all combinations of them, nor for the tool user
to comprehend all reasonable combinations. Therefore, it is useful for the user to
have some predefined parameter sets. Some of these sets were implemented for
the new tool, based on various observations during the development and common
sense.
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4 Tool evaluation

Assessing the performance of any litmus testing tool is quite challenging. The conceptual
reason for that is that such a tool is intended for finding unexpected behaviors. To be
more specific, one might assume that the frequency of certain behaviors can be used as
a metric for assessing performance. However, the purpose of this tool is not to maximize
the occurrences of some particular behaviors, but to maximize the number of different
seen behaviors. This is a classic problem of quality versus quantity. Also, there is no
connection between achieving high frequency of weak behavior for one test on one ma-
chine and for another test on another machine. The best parameters for one case may
be significantly worse for another. Finally, as mentioned previously, if a behavior appears
at least 3 times in a large enough run, it will very likely reproduce in subsequent runs.
Hence, increasing its frequency basically does not help ensure the consistent occurrence
of the same behavior. So overall, the raw frequency of any particular behaviors happen-
ing cannot be used as a decent evaluation metric.

Speaking of frequencies, what we can do is look at how reproducible the test results are.
If the frequencies are consistent between different runs, then we can gain confidence
that there are no unaccounted parameters. The only test where measuring frequency is
reasonable is the SB test, simply because all other tests that produce weak behaviors
only do so extremely rarely. The results of this measurement can be seen in figure 3. The
bars in the charts represent the frequency of all behaviors in the corresponding 100K
iterations. Note that SB has four behaviors, but the fourth one can appear 3 orders of
magnitude rarer, to the point where it is not visible on the charts.

(a) x86, normal run, Var=0.19% (b) Arm, normal run, Var=0.93%

(c) x86, parallel run, Var=0.06% (d) Arm, parallel run, Var=0.97%

Figure 3: SB test, frequencies of observed behaviors vs. iteration number.
Outcome color-coding: (0, 0) is blue (weak behavior), (0, 1) is red, (1,
0) is yellow, (1, 1) is too small to see. Point resolution of 100K iterations.
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Visually it is clear that the stability of frequencies highly depends on the environment and
on test parameters. If we suppose these distributions should be constant, then variance
is a natural metric to quantitatively describe the stability of this distribution. Out of these
four datasets, the most stable is the parallel x86 run with a variance of 0.06%, while the
clearly least stable it the parallel Arm run with a variance of 0.97%. What this analysis
tells us is not only that some environments are more stable than others, but also that
due to uncontrollable environment changes the results of running a litmus test will not
necessarily be quantitatively same. The best we can do to mitigate these effects is to run
the test long enough for these perturbations to cancel out.

Another test we can do to more precisely check the stability of frequencies is to use a
statistical test such as chi-squared test. These tests interpret data as some distribution of
a random variable, and are widely used for validating these distributions in various ways.
For instance, the chi-squared test can be used to check whether two independent data
sets have the same distribution. We can use this to try find such a test duration, so that the
perturbations of the unstable environment average out to a stable frequency distribution.
This check was performed on SB test, but it failed to reach a stable distribution (in the
sense that the longest tested duration still was not enough). The probable reason for
that is poor performance of chi-squared test specifically when some of the frequencies
are significantly lower that others, which is the case with SB. As mentioned previously, it
makes no sense to try tests other that SB, so this chi-squared test gave no interpretable
results. In the future, instead of the chi-squared test it is possible to try the Fisher exact
test, which has its own shortcomings though.

Measuring quantities does not help, so we turn our attention to qualitative measurements.
Since we want to ensure that the tool finds as many behaviors as possible, we can try
running a set of tests and making sure that all the expected behaviors are found. The
problem with this approach is that normally we don’t know which behaviors are to be
expected. It can be illustrated with another classic litmus test — load buffering, or LB for
short.

x, y = 0;

a = x;

y = 1;

b = y;

x = 1;

Figure 4: Load buffering litmus test

The outcome of this test is given by the state of a and b. Three outcomes are straight-
forward, and the fourth (1, 1) outcome is weak. The problem though is that this fourth
outcome is very rare to observe, to the point where is does not seem to appear at all. For
instance, on an x86 machine, neither JCStress nor litmus7 can quickly confirm this weak
behavior. Naturally, the new tool cannot spot it either, but it would be wrong to conclude
this is due to some flaw. This idea is further supported by the message passing test
(discussed later in details), which does not appear in its classic form, but suddenly does
appear when a redundant if is inserted into it. This implies that it is not the tool being
unable to detect some behavior, but rather the compiler doing something intricate and
possibly prohibiting this behavior at all.

One further method of evaluating the new tool can be to directly compare it to existing
tools like JCStress or litmus7. We can run some tests using each of these tools and check
if they agree on produces behaviors. The problem with this approach is that the results in
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fact do not have to agree on the behaviors, because each of these tools operates under
its own memory model. We can expect some behaviors from the current Kotlin memory
model, but once again, we do not know them for sure. So, since this comparison is not
exactly representative, for now it has been left as future work.

To conclude, the evaluation of the tool showed ambiguous results. In some circum-
stances, the results visually seem to be relatively stable, which was seen in cumula-
tive charts in figure 3. However, no method showed definitive evidence of tool reliability.
Abstractly speaking, this is due to the nature of the context: the behaviors are not guaran-
teed to appear, different memory models induce different results, unstable environments
render statistical tests less useful than they normally are. So in the end, the final test we
can perform on our new tool is to simply use it as intended. If we are able to find some
unexpected behaviors of the compiled programs with its help, then it can be declared that
the tool achieved its goal.
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5 Testing the compiler

First, a suite of litmus tests checking various aspects of Kotlin memory model had to
be prepared. These tests were picked with the help of our industry advisor based on
common existing litmus tests,6 and then translated into a format to be used with the new
tool, similarly to figure 2. Then, these tests were run on two different machines: one with
a 6-core x86 AMD processor and one with an 8-core M1 processor in Arm mode. It is
crucial to run these tests on multiple hardware and software platforms, since some tests
only demonstrate weak behaviors on specific platforms. The version of the latest Kotlin
compiler at the time is 1.8.21.

Test name Arm x86 Expected
ATOM - - -

SB + + +
SB+Vol - - -
MUTEX - - -
SB+Lock - - -

MP - + +
MP+Vol - - -

MP+Lock - - -
MP+DRF - - -

CoRR - - +
CoRR+CSE - - +

IRIW - - +
IRIW+Vol - - -

UPUB + - -
UPUB+Ctor + - -

OOTA - - -
LB - - +

LB+FakeDEPS - - -
LB+Vol - - -

Table 1: Results of testing Kotlin/Native compiler on two machines. ”Arm”
and ”x86” are machine CPU architectures. Plus symbol means this test

exhibited some weak behavior. Deviations from expectation are marked with
color: allowed deviations are green, invalid deviations are red.

The results of running the tests are presented in Table 1. Firstly, we see that most of
the tests match our expectations, which means that the current implementation of the
Kotlin/Native compiler is quite robust. We can also see here that some tests only give
weak outcomes on one platform and not another. There is also a number of tests that
were expected to behave weakly, but in reality did not, which is perfectly acceptable.
Finally, some tests showed weak behavior even though they were not supposed to. We
will now examine the interesting discrepancies in detail.

One interesting test is message passing, or MP, shown in figure 5. As it can be seen, it
appeared on a stronger x86 architecture, without appearing on weaker Arm. One thing
about this test is it never showed all four possible behaviors at the same time. It shows

6The detailed list can be found at: https://github.com/JetBrains-Research/

KotlinMemoryModelResearch/blob/master/litmus/litmus.md#guarantees-and-litmus-tests
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x, y = 0;

x = 1;

y = 1;

a = y;

b = x;

(a) MP

x = 0;

volatile y = 0;

x = 1;

y = 1;

if(y != 0) {
b = x;

}
(b) MP+DRF

x, y = 0;

x = 1;

y = 1;

a = y;

if(a != 0) {
b = x;

}
(c) MP+NoDRF

Figure 5: Message passing test and its variants

three behaviors when compiled in debug mode on x86, and also three behaviors when
compiled in optimized mode on x86, except this time with the weak behavior. It appears
that this test does not truly show weak behavior on hardware level, otherwise all four
behaviors would be likely to show in the same run. This behavior can be easily explained,
however, if the compiler makes a reordering of operations in either thread. This is a clear
demonstration of how memory models of different levels can interact with each other.

There is one more interesting thing about this MP test. Figure 5 also shows two variants
of MP. The MP+DRF is a classic test from our suite, and it behaves as expected. DRF
stands here for data-race-freedom principle, which requires programs with no data races
to be sequentially consistent. The interesting part is the third test, which was discovered
in a different context and then reshaped to this form. Since it looks like the DRF test,
short of the volatile modifier and hence with a data race, it was nicknamed NoDRF.
While the other two showed no true weak behavior, this one did: it can end with a==1 &&

b==0. This tells us that the tool is in fact able to catch the weak behavior of MP test, and
yet it does not. This effect is probably caused by some quirk regarding the if statement,
and it might also be worth looking into for the compiler developers.

class Holder { x: Int }
h: Holder = null;

h = new Holder();

t = h;

if (t != null) {
outcome = t.x;

}
(a) UPUB

class Holder { x: Int = 1; }
h: Holder = null;

h = new Holder();

t = h;

if (t != null) {
outcome = t.x;

}
(b) UPUB+Ctor

Figure 6: Unsafe publication tests

Another two tests require additional attention. The UPUB and UPUB+Ctor tests demon-
strated in figure 6 check which values can be read from class fields during the process of
class instantiation and publication. As Kotlin is a memory-safe programming language,
it must ensure that no ”garbage” value can be read during this process. This follows the
JMM principle as well. However, the tool has found that ”garbage” values can in fact be
read. This behavior is quite unexpected and should not be allowed for two reasons. One
is that Kotlin is a memory-safe language, and reading uninitialized values should not be
allowed. Another is that the common memory model cannot violate JMM in order to be
common by definition.

Upon closer inspection, we find apparently random values being read. The explanation
for this behavior is likely the following: publishing a new object requires writing to several
variables. One is the reference to the object, other are filling its fields with default values.
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outcome | type | count | frequency

------------------------------------------------

null | ACCEPTED | 26767684 | 65.607%

0 | ACCEPTED | 14032239 | 34.392%

71817408 | FORBIDDEN | 12 | <0.001%

-1493360416 | FORBIDDEN | 1 | <0.001%

-1560102576 | FORBIDDEN | 1 | <0.001%

5830112 | FORBIDDEN | 1 | <0.001%

21281392 | FORBIDDEN | 1 | <0.001%

-1115771136 | FORBIDDEN | 1 | <0.001%

. . .

Figure 7: Sample tool output after running UPUB test

If no special restrictions are imposed on these writes, they can be reordered. When
that happens, other threads can see the reference to the object, but its fields are not yet
initialized, which results in ”garbage” values being read. The fix is pretty straightforward:
the compiler needs to add a release fence between these writes.
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6 Conclusions and future work

In this work, a new litmus testing tool designed for testing Kotlin/Native compiler was im-
plemented. It incorporates the common techniques from existing litmus testing tools. The
tool was then evaluated to make sure that any results would be reproducible. Then it was
used to run a number of tests against the latest version of Kotlin/Native compiler. Several
unexpected behaviors were found, some of them are practically bugs in the compiler. The
main goal of testing Kotlin compiler memory model has been achieved.

That said, there is more testing to be done: more machine architectures, more different
tests that cover other aspects of memory models, testing the Kotlin/JVM compiler. The
latter is especially important to ensure that the common memory model is indeed com-
mon. Also, not all tests that were expected to show weak behaviors did so, and some
more improvements like code generation can be made in order to maximize the chance
of covering all behaviors. Finally, the tool is also currently lacking a proper user interface
such as a command line interface.

The implementation of the tool and the used litmus test suite can be found at https:
//github.com/DLochmelis33/komem-litmus.
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